Cardiopulmonary Exercise Testing in Cystic Fibrosis

Owen Tomlinson MSc, AFHEA
Children’s Health & Exercise Research Centre
University of Exeter

James Shelley MSc
Physical Activity Exchange
Liverpool John Moores University
Cardiopulmonary Exercise Testing

• Cardiopulmonary Exercise Testing (CPET)
 • What? Why? How?
• Key Parameters
 • VO_2, VCO_2, HR, V_E, RER
• Applicability to Clinical Settings
• Demonstration
Energy Systems

[Graph showing energy systems over time.]

- Phosphagen
- Glycolytic
- Oxidative
Energy Systems

Diagram showing the interconnection of energy systems:
- Mitochondria
- Oxygen consumption
- Carbon dioxide production
- Pulmonary arteries
- Circulation
- Systemic arteries
- Inspired air
- Ventilation
- Expired air
Cardiopulmonary Exercise Testing

• CPET allows the simultaneous study of the functional capabilities of the respiratory, cardiovascular and muscular systems
• This can at rest and during the transition to a maximal metabolic rate (aerobic capacity – VO$_{2\text{max}}$)
• Allow the assessment of exercise capacity and causes of fatigue
• Allows reserve capacity of the body to be stressed, particularly in terms of its ability to deliver oxygen to peripheral muscles
• Many diagnostic tests are done at rest – why?
Cardiopulmonary Exercise Testing

• Bike v Treadmill
 – Bike allows for an easier quantification of work-rate and is better for extremely dyspnoeic or uncoordinated patients
 – Treadmill may elicit a higher VO$_2$max
Cardiopulmonary Exercise Testing

• Two-Phase Ramp Test
 – Intensity increases as a linear function of time
 – Verification via 110% of maximal workload from first test

![Diagram of Two-Phase Ramp Test]

~ 10 mins
Cardiopulmonary Exercise Testing

• Why?
 • Many ‘secondary characteristics’ are invalid
 • Heart Rate
 • RER
 • Lactate
 • RPE/RPE
 • Can result in early termination of test
Cardiopulmonary Exercise Testing
Cardiopulmonary Exercise Testing

• Measures
 – Gaseous Exchange, via means of a facemask
 • VO_2, VCO_2
 • Heart Rate
Key Measures

• **VO\textsubscript{2}**
 • The volume of oxygen utilised in metabolism
 • **VO\textsubscript{2max}** is the maximum rate that ATP can be synthesised aerobically
 • Ranges from 35-43 ml/kg/min in healthy UK children
 • Range from 24-44 ml/kg/min in CF children
 • High VO\textsubscript{2max} is associated with a decreased risk of mortality

Armstrong et al. 1991; Saynor et al. 2013; Nixon et al. 1992
Key Measures

• VCO_2
 – Volume of CO_2 exhaled
 – Extreme exercise results in anaerobic metabolism, with lactic acid produced as a by-product (acidemia)
 – When plotted against V_E, we obtain a V_E/VCO_2 ratio
 • Poor V_E/VCO_2 implies ventilation is wasted on dead space, possibly due to poor perfusion at the alveoli
 • May also indicate a low $PaCO_2$ driving diffusion i.e. hyperventilation in cardiac patients

Tumminello et al. 2007
Key Measures

• Heart Rate
 – During CPET, patients should be reaching 80% of their age-predicted maximum
 • 220 – Age in years = Max HR
 – HR will rise at differing rate depending upon cardiac function
 • Poor LV function will result in rapid HR increase
 – Heart Rate Reserve (HRR) will be high if a patient fails to reach 80% of their predicated maximum. Exercise may be limited by something other than cardiac function, i.e. peripheral vascular disease
9 plot display highlighting cardiovascular, ventilatory and metabolic responses to exercise
Peak VO₂

Normal
≥ 85% predicted
- Anxiety
- Obesity
- Mild Disease

Low
< 85% predicted
- Anaerobic Threshold
 - Normal
 ≥ 40% predicted PKVO₂
 - Breathing Reserve
 - Low
 < 40% predicted PKVO₂
 - Breathing Reserve

Normal
≥ 30%
- Poor Effort
- Deconditioning

Low
< 30%
- Coronary Disease
- Ventilatory Impairment

Normal
≥ 30%
- Circulatory Impairment

Low
< 30%
- Mixed Lesions
Applicability

• A CPET is useful in the following situations:
 – Differential Diagnosis
 • If cause of dyspnoea is unknown, CPET can serve to define specific limiting organ system
 – Disability Evaluation
 • Provides objective assessment of exercise capacity and impairment
 – Rehabilitation
 • Allows for prescription of appropriate exercise intensity
 – Assessing Preoperative Risk
 • Provides objective assessment about cardiopulmonary reserve during heightened metabolic stress
Applicability in CF

- A CPET is useful in the following situations:
 - Prognosis
 - Risk of hospitalisation
 - Indicator of QoL
Applicability

• Why CPET instead of other tests?
 – Sub-maximal exercise tests are common in clinical settings
 • Shuttle-Walk Test
 • 6-Minute Walk Test
 – Correlation approximately 50-65%
 – Can under predict VO$_2$$_{\text{max}}$ by 6 ml/kg/min (up to ~ 35% error)
 – Discrete results
 • These tests can be ‘beaten’
 • CPET cannot be ‘beaten’

Singh et al. 1994, Selvadurai et al. 2003
Applicability

• CPET is considered the ‘Gold Standard’ in terms of exercise testing
 – “CPET complements other clinical and diagnostic modalities, and by directly quantitating work capacity improves the diagnostic accuracy of impairment/disability evaluation”
 • American Thoracic Society
 – “Direct measures of VO\textsubscript{2} are reliable and reproducible and provide the most accurate assessment of functional capacity”
 • American Heart Association
 – “Unequivocal evidence...is not yet available, and for this reason we cannot make a formal recommendation for this practice. However...exercise testing can provide guidance on prognosis and individual patient counselling inpatients 10 years and older”
 • European Cystic Fibrosis Society
Cessation

• When to stop a CPET?
 • CPET is done to fatigue
 • UNLESS....
 – Severe desaturation with an $\text{SpO}_2 \leq 80\%$ when accompanied by symptoms and signs of severe hypoxemia
 – Other signs of respiratory failure
 – Chest pain suggestive of pneumothorax or cardiac ischemia
 – Hemoptysis
 – Sudden pallor
 – Systolic blood pressure exceeding 250 mm Hg
 – Decrease in systolic blood pressure by more than 20 mm Hg or increase in diastolic pressure above 120 mm Hg
 – Loss of coordination, Mental confusion, Dizziness or faintness, Complex cardiac ectopy, Second- or third-degree heart block

Demonstration