Publications by year
In Press
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA (In Press). Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of C. elegans and its functional response to drugs.
Disease Models & Mechanisms Full text.
Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M (In Press). Spaceflight Affects Neuronal Morphology and Alters Transcellular Degradation of Neuronal Debris in Adult Caenorhabditis elegans.
Abstract:
Spaceflight Affects Neuronal Morphology and Alters Transcellular Degradation of Neuronal Debris in Adult Caenorhabditis elegans
AbstractExtended space travel, such as crewed missions to Mars and beyond, is a goal for both government space agencies and private companies. Research over the past decades, however, has shown that spaceflight poses risks to human health, including negative effects on musculoskeletal, cardiovascular, and immune systems. Details regarding effects on the nervous system have been less well described. The use of animal models holds great potential to identify and dissect conserved mechanisms of neuronal response to spaceflight. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo, at the single-cell level. We found that animals that lived 5 days of their adult life on the International Space Station exhibited considerable dendritic remodeling of the highly branched PVD neuron and modest morphological changes in touch receptor neurons when compared to ground control animals. Our results indicate hyperbranching as a common response of adult neurons to spaceflight. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues (especially hypodermis), suggesting an impaired transcellular degradation of debris that is released from neurons. Overall, our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop countermeasures to protect human health during space exploration.
Abstract.
2021
Ellwood RA, Hewitt JE, Torregrossa R, Philp AM, Hardee JP, Hughes S, van de Klashorst D, Gharahdaghi N, Anupom T, Slade L, et al (2021). Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model.
Proceedings of the National Academy of Sciences,
118(9), e2018342118-e2018342118.
Abstract:
Mitochondrial hydrogen sulfide supplementation improves health in the C. elegans Duchenne muscular dystrophy model
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.
Abstract.
Willis CRG, Deane CS (2021). Nrf2 deficiency induces skeletal muscle mitochondrial dysfunction: a proteomics/bioinformatics approach.
J Physiol,
599(3), 729-730.
Author URL.
Full text.
Laranjeiro R, Harinath G, Pollard AK, Gaffney CJ, Deane CS, Vanapalli SA, Etheridge T, Szewczyk NJ, Driscoll M (2021). Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans.
iScience,
24(2).
Abstract:
Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans
© 2021 the Author(s) Extended space travel is a goal of government space agencies and private companies. However, spaceflight poses risks to human health, and the effects on the nervous system have to be better characterized. Here, we exploited the unique experimental advantages of the nematode Caenorhabditis elegans to explore how spaceflight affects adult neurons in vivo. We found that animals that lived 5 days of adulthood on the International Space Station exhibited hyperbranching in PVD and touch receptor neurons. We also found that, in the presence of a neuronal proteotoxic stress, spaceflight promotes a remarkable accumulation of neuronal-derived waste in the surrounding tissues, suggesting an impaired transcellular degradation of debris released from neurons. Our data reveal that spaceflight can significantly affect adult neuronal morphology and clearance of neuronal trash, highlighting the need to carefully assess the risks of long-duration spaceflight on the nervous system and to develop adequate countermeasures for safe space exploration. Neuroscience; developmental neuroscience; space sciences
Abstract.
Bass JJ, Kazi AA, Deane CS, Nakhuda A, Ashcroft SP, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, et al (2021). The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo.
J Physiol,
599(3), 963-979.
Abstract:
The mechanisms of skeletal muscle atrophy in response to transient knockdown of the vitamin D receptor in vivo.
KEY POINTS: Reduced vitamin D receptor (VDR) expression prompts skeletal muscle atrophy. Atrophy occurs through catabolic processes, namely the induction of autophagy, while anabolism remains unchanged. In response to VDR-knockdown mitochondrial function and related gene-set expression is impaired. In vitro VDR knockdown induces myogenic dysregulation occurring through impaired differentiation. These results highlight the autonomous role the VDR has within skeletal muscle mass regulation. ABSTRACT: Vitamin D deficiency is estimated to affect ∼40% of the world's population and has been associated with impaired muscle maintenance. Vitamin D exerts its actions through the vitamin D receptor (VDR), the expression of which was recently confirmed in skeletal muscle, and its down-regulation is linked to reduced muscle mass and functional decline. To identify potential mechanisms underlying muscle atrophy, we studied the impact of VDR knockdown (KD) on mature skeletal muscle in vivo, and myogenic regulation in vitro in C2C12 cells. Male Wistar rats underwent in vivo electrotransfer (IVE) to knock down the VDR in hind-limb tibialis anterior (TA) muscle for 10 days. Comprehensive metabolic and physiological analysis was undertaken to define the influence loss of the VDR on muscle fibre composition, protein synthesis, anabolic and catabolic signalling, mitochondrial phenotype and gene expression. Finally, in vitro lentiviral transfection was used to induce sustained VDR-KD in C2C12 cells to analyse myogenic regulation. Muscle VDR-KD elicited atrophy through a reduction in total protein content, resulting in lower myofibre area. Activation of autophagic processes was observed, with no effect upon muscle protein synthesis or anabolic signalling. Furthermore, RNA-sequencing analysis identified systematic down-regulation of multiple mitochondrial respiration-related protein and genesets. Finally, in vitro VDR-knockdown impaired myogenesis (cell cycling, differentiation and myotube formation). Together, these data indicate a fundamental regulatory role of the VDR in the regulation of myogenesis and muscle mass, whereby it acts to maintain muscle mitochondrial function and limit autophagy.
Abstract.
Author URL.
Full text.
2020
Deane C, Bass J, Crossland H, Phillips B, Atherton P (2020). Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes.
Nutrients,
12(9), 2670-2670.
Abstract:
Animal, Plant, Collagen and Blended Dietary Proteins: Effects on Musculoskeletal Outcomes
Dietary protein is critical for the maintenance of musculoskeletal health, where appropriate intake (i.e. source, dose, timing) can mitigate declines in muscle and bone mass and/or function. Animal-derived protein is a potent anabolic source due to rapid digestion and absorption kinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion and maintenance. However, global concerns surrounding environmental sustainability has led to an increasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources. This is despite the lower anabolic profile of plant and collagen protein due to the inferior essential amino acid profile (e.g. lower leucine content) and subordinate digestibility (versus animal). This review evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and as protein blends, for augmenting muscle and bone metabolism and health in the context of ageing, exercise and energy restriction.
Abstract.
Full text.
Deane CS, Phillips BE, Smith K, Steele AM, Libretto T, Statton SA, Atherton PJ, Etheridge T (2020). Challenges and practical recommendations for successfully recruiting inactive, statin-free older adults to clinical trials.
BMC Research Notes,
13(1).
Full text.
Deane CS, Ely IA, Wilkinson DJ, Smith K, Phillips BE, Atherton PJ (2020). Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis.
Proc Nutr Soc, 1-12.
Abstract:
Dietary protein, exercise, ageing and physical inactivity: interactive influences on skeletal muscle proteostasis.
Dietary protein is a pre-requisite for the maintenance of skeletal muscle mass; stimulating increases in muscle protein synthesis (MPS), via essential amino acids (EAA), and attenuating muscle protein breakdown, via insulin. Muscles are receptive to the anabolic effects of dietary protein, and in particular the EAA leucine, for only a short period (i.e. about 2-3 h) in the rested state. Thereafter, MPS exhibits tachyphylaxis despite continued EAA availability and sustained mechanistic target of rapamycin complex 1 signalling. Other notable characteristics of this 'muscle full' phenomenon include: (i) it cannot be overcome by proximal intake of additional nutrient signals/substrates regulating MPS; meaning a refractory period exists before a next stimulation is possible, (ii) it is refractory to pharmacological/nutraceutical enhancement of muscle blood flow and thus is not induced by muscle hypo-perfusion, (iii) it manifests independently of whether protein intake occurs in a bolus or intermittent feeding pattern, and (iv) it does not appear to be dependent on protein dose per se. Instead, the main factor associated with altering muscle full is physical activity. For instance, when coupled to protein intake, resistance exercise delays the muscle full set-point to permit additional use of available EAA for MPS to promote muscle remodelling/growth. In contrast, ageing is associated with blunted MPS responses to protein/exercise (anabolic resistance), while physical inactivity (e.g. immobilisation) induces a premature muscle full, promoting muscle atrophy. It is crucial that in catabolic scenarios, anabolic strategies are sought to mitigate muscle decline. This review highlights regulatory protein turnover interactions by dietary protein, exercise, ageing and physical inactivity.
Abstract.
Author URL.
Full text.
Pollard AK, Gaffney CJ, Deane CS, Balsamo M, Cooke M, Ellwood RA, Hewitt JE, Mierzwa BE, Mariani A, Vanapalli SA, et al (2020). Molecular Muscle Experiment: Hardware and Operational Lessons for Future Astrobiology Space Experiments.
Astrobiology,
20(8), 935-943.
Abstract:
Molecular Muscle Experiment: Hardware and Operational Lessons for Future Astrobiology Space Experiments.
Biology experiments in space seek to increase our understanding of what happens to life beyond Earth and how we can safely send life beyond Earth. Spaceflight is associated with many (mal)adaptations in physiology, including decline in musculoskeletal, cardiovascular, vestibular, and immune systems. Biological experiments in space are inherently challenging to implement. Development of hardware and validation of experimental conditions are critical to ensure the collection of high-quality data. The model organism
. Caenorhabditis elegans
. has been studied in space for more than 20 years to better understand spaceflight-induced (patho)physiology, particularly spaceflight-induced muscle decline. These experiments have used a variety of hardware configurations. Despite this, hardware used in the past was not available for our most recent experiment, the Molecular Muscle Experiment (MME). Therefore, we had to design and validate flight hardware for MME. MME provides a contemporary example of many of the challenges faced by researchers conducting
. C. elegans
. experiments onboard the International Space Station. Here, we describe the hardware selection and validation, in addition to the ground-based experiment scientific validation testing. These experiences and operational solutions allow others to replicate and/or improve our experimental design on future missions.
Abstract.
Author URL.
Full text.
Willis CRG, Ames RM, Deane CS, Phillips BE, Boereboom CL, Abdulla H, Bukhari SSI, Lund JN, Williams JP, Wilkinson DJ, et al (2020). Network analysis of human muscle adaptation to aging and contraction.
Aging (Albany NY),
12(1), 740-755.
Abstract:
Network analysis of human muscle adaptation to aging and contraction.
Resistance exercise (RE) remains a primary approach for minimising aging muscle decline. Understanding muscle adaptation to individual contractile components of RE (eccentric, concentric) might optimise RE-based intervention strategies. Herein, we employed a network-driven pipeline to identify putative molecular drivers of muscle aging and contraction mode responses. RNA-sequencing data was generated from young (21±1 y) and older (70±1 y) human skeletal muscle before and following acute unilateral concentric and contralateral eccentric contractions. Application of weighted gene co-expression network analysis identified 33 distinct gene clusters ('modules') with an expression profile regulated by aging, contraction and/or linked to muscle strength. These included two contraction 'responsive' modules (related to 'cell adhesion' and 'transcription factor' processes) that also correlated with the magnitude of post-exercise muscle strength decline. Module searches for 'hub' genes and enriched transcription factor binding sites established a refined set of candidate module-regulatory molecules (536 hub genes and 60 transcription factors) as possible contributors to muscle aging and/or contraction responses. Thus, network-driven analysis can identify new molecular candidates of functional relevance to muscle aging and contraction mode adaptations.
Abstract.
Author URL.
Full text.
Bass JJ, Nakhuda A, Deane CS, Brook MS, Wilkinson DJ, Phillips BE, Philp A, Tarum J, Kadi F, Andersen D, et al (2020). Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy.
Mol Metab,
42Abstract:
Overexpression of the vitamin D receptor (VDR) induces skeletal muscle hypertrophy.
OBJECTIVE: the Vitamin D receptor (VDR) has been positively associated with skeletal muscle mass, function and regeneration. Mechanistic studies have focused on the loss of the receptor, with in vivo whole-body knockout models demonstrating reduced myofibre size and function and impaired muscle development. To understand the mechanistic role upregulation of the VDR elicits in muscle mass/health, we studied the impact of VDR over-expression (OE) in vivo before exploring the importance of VDR expression upon muscle hypertrophy in humans. METHODS: Wistar rats underwent in vivo electrotransfer (IVE) to overexpress the VDR in the Tibialis anterior (TA) muscle for 10 days, before comprehensive physiological and metabolic profiling to characterise the influence of VDR-OE on muscle protein synthesis (MPS), anabolic signalling and satellite cell activity. Stable isotope tracer (D2O) techniques were used to assess sub-fraction protein synthesis, alongside RNA-Seq analysis. Finally, human participants underwent 20 wks of resistance exercise training, with body composition and transcriptomic analysis. RESULTS: Muscle VDR-OE yielded total protein and RNA accretion, manifesting in increased myofibre area, i.e. hypertrophy. The observed increases in MPS were associated with enhanced anabolic signalling, reflecting translational efficiency (e.g. mammalian target of rapamycin (mTOR-signalling), with no effects upon protein breakdown markers being observed. Additionally, RNA-Seq illustrated marked extracellular matrix (ECM) remodelling, while satellite cell content, markers of proliferation and associated cell-cycled related gene-sets were upregulated. Finally, induction of VDR mRNA correlated with muscle hypertrophy in humans following long-term resistance exercise type training. CONCLUSION: VDR-OE stimulates muscle hypertrophy ostensibly via heightened protein synthesis, translational efficiency, ribosomal expansion and upregulation of ECM remodelling-related gene-sets. Furthermore, VDR expression is a robust marker of the hypertrophic response to resistance exercise in humans. The VDR is a viable target of muscle maintenance through testable Vitamin D molecules, as active molecules and analogues.
Abstract.
Author URL.
Full text.
Madrigal P, Gabel A, Villacampa A, Manzano A, Deane CS, Bezdan D, Carnero-Diaz E, Medina FJ, Hardiman G, Grosse I, et al (2020). Revamping Space-omics in Europe.
Cell Systems,
11(6), 555-556.
Full text.
2019
Deane C, Szewczyk N (2019). Extraterrestrial life science.
Biologist,
66(4), 12-15.
Full text.
Deane CS, Ames RM, Phillips BE, Weedon MN, Willis CRG, Boereboom C, Abdulla H, Bukhari SSI, Lund JN, Williams JP, et al (2019). The acute transcriptional response to resistance exercise: impact of age and contraction mode.
Aging (Albany NY),
11(7), 2111-2126.
Abstract:
The acute transcriptional response to resistance exercise: impact of age and contraction mode.
Optimization of resistance exercise (RE) remains a hotbed of research for muscle building and maintenance. However, the interactions between the contractile components of RE (i.e. concentric (CON) and eccentric (ECC)) and age, are poorly defined. We used transcriptomics to compare age-related molecular responses to acute CON and ECC exercise. Eight young (21±1 y) and eight older (70±1 y) exercise-naïve male volunteers had vastus lateralis biopsies collected at baseline and 5 h post unilateral CON and contralateral ECC exercise. RNA was subjected to next-generation sequencing and differentially expressed (DE) genes tested for pathway enrichment using Gene Ontology (GO). The young transcriptional response to CON and ECC was highly similar and older adults displayed moderate contraction-specific profiles, with no GO enrichment. Age-specific responses to ECC revealed 104 DE genes unique to young, and 170 DE genes in older muscle, with no GO enrichment. Following CON, 15 DE genes were young muscle-specific, whereas older muscle uniquely expressed 147 up-regulated genes enriched for cell adhesion and blood vessel development, and 28 down-regulated genes involved in mitochondrial respiration, amino acid and lipid metabolism. Thus, older age is associated with contraction-specific regulation often without clear functional relevance, perhaps reflecting a degree of stochastic age-related dysregulation.
Abstract.
Author URL.
Full text.
2018
Dugdale HF, Hughes DC, Allan R, Deane CS, Coxon CR, Morton JP, Stewart CE, Sharples AP (2018). The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction.
Molecular and Cellular Biochemistry,
444(1-2), 109-123.
Abstract:
The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction
© 2017, the Author(s). Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 µM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction.
Abstract.
2017
Deane CS, Wilkinson DJ, Phillips BE, Smith K, Etheridge T, Atherton PJ (2017). "Nutraceuticals" in relation to human skeletal muscle and exercise.
Am J Physiol Endocrinol Metab,
312(4), E282-E299.
Abstract:
"Nutraceuticals" in relation to human skeletal muscle and exercise.
Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g. cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e. strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e. protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2) exercise performance: (i.e. strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine.
Abstract.
Author URL.
Full text.
2015
Sharples AP, Hughes DC, Deane CS, Saini A, Selman C, Stewart CE (2015). Longevity and skeletal muscle mass: the role of IGF signalling, the sirtuins, dietary restriction and protein intake. Aging Cell, 14(4), 511-523.
2013
Deane CS, Hughes DC, Sculthorpe N, Lewis MP, Stewart CE, Sharples AP (2013). Impaired hypertrophy in myoblasts is improved with testosterone administration. The Journal of Steroid Biochemistry and Molecular Biology, 138, 152-161.
2012
Bailey DP, Fairclough SJ, Savory LA, Denton SJ, Pang D, Deane CS, Kerr CJ (2012). Accelerometry-assessed sedentary behaviour and physical activity levels during the segmented school day in 10–14-year-old children: the HAPPY study. European Journal of Pediatrics, 171(12), 1805-1813.