Key publications
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM (2022). Anti-Depressant Properties of Crocin Molecules in Saffron.
Molecules,
27(7), 2076-2076.
Abstract:
Anti-Depressant Properties of Crocin Molecules in Saffron
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type a and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Abstract.
Hassan AMA, Zannou O, Pashazadeh H, Ali Redha A, Koca I (2022). Drying date plum (. <i>Diospyros lotus</i>. L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. Journal of Food Science, 87(10), 4394-4415.
Zannou O, Pashazadeh H, Ghellam M, Ali Redha A, Koca I (2022). Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion.
Biomass Conversion and BiorefineryAbstract:
Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion
AbstractBitter melon (Momordica charantia) is a rich source of phytochemicals including phenolic compounds with diverse health-promoting benefits and potential food industry application due to their antioxidant potential. Bitter melon leaves have been limitedly investigated in comparison to bitter melon fruits. The current work explores the use of green extraction methodology to optimize enhanced extraction of phenolic compounds from bitter melon leaves using ultrasonically assisted extraction and choline chloride-acetic acid (CHAC)–based natural deep eutectic solvent. Extraction using CHAC significantly improved the extraction of total phenolic compounds, total flavonoids, and individual phenolic compounds (including gallic acid, chlorogenic acid, vanillic acid, epicatechin, and quercetin-3-glucoside) in comparison to water, ethanol, and methanol. The effect of molar ratio, water content, temperature, and time on the extraction efficiency of bitter melon leaf phenolic compounds by CHAC was explored and optimized with surface response methodology (central composite design). The optimum condition for the extraction of individual phenolic compounds is a molar ratio of 1:4.35 CHAC with 20.68% water content at 75 °C for 21.23 min. Evaluation of the bioaccessibility of individual phenolic compounds concluded that the most bioaccessible compound was vanillic acid (105.00 ± 2.52%) followed by salicylic acid, chlorogenic acid, syringic acid, gallic acid, epicatechin, and quercetin-3-glucoside.
Abstract.
Publications by category
Journal articles
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM (2022). Anti-Depressant Properties of Crocin Molecules in Saffron.
Molecules,
27(7), 2076-2076.
Abstract:
Anti-Depressant Properties of Crocin Molecules in Saffron
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type a and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Abstract.
Ali Redha A, Anusha Siddiqui S, Zare R, Spadaccini D, Guazzotti S, Feng X, Bahmid NA, Wu YS, Ozeer FZ, Aluko RE, et al (2022). Blackcurrants: a Nutrient-Rich Source for the Development of Functional Foods for Improved Athletic Performance. Food Reviews International, 1-23.
Hassan AMA, Zannou O, Pashazadeh H, Ali Redha A, Koca I (2022). Drying date plum (. <i>Diospyros lotus</i>. L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. Journal of Food Science, 87(10), 4394-4415.
Zannou O, Pashazadeh H, Ghellam M, Ali Redha A, Koca I (2022). Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion.
Biomass Conversion and BiorefineryAbstract:
Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion
AbstractBitter melon (Momordica charantia) is a rich source of phytochemicals including phenolic compounds with diverse health-promoting benefits and potential food industry application due to their antioxidant potential. Bitter melon leaves have been limitedly investigated in comparison to bitter melon fruits. The current work explores the use of green extraction methodology to optimize enhanced extraction of phenolic compounds from bitter melon leaves using ultrasonically assisted extraction and choline chloride-acetic acid (CHAC)–based natural deep eutectic solvent. Extraction using CHAC significantly improved the extraction of total phenolic compounds, total flavonoids, and individual phenolic compounds (including gallic acid, chlorogenic acid, vanillic acid, epicatechin, and quercetin-3-glucoside) in comparison to water, ethanol, and methanol. The effect of molar ratio, water content, temperature, and time on the extraction efficiency of bitter melon leaf phenolic compounds by CHAC was explored and optimized with surface response methodology (central composite design). The optimum condition for the extraction of individual phenolic compounds is a molar ratio of 1:4.35 CHAC with 20.68% water content at 75 °C for 21.23 min. Evaluation of the bioaccessibility of individual phenolic compounds concluded that the most bioaccessible compound was vanillic acid (105.00 ± 2.52%) followed by salicylic acid, chlorogenic acid, syringic acid, gallic acid, epicatechin, and quercetin-3-glucoside.
Abstract.
Algaithi M, Mudgil P, Hamdi M, Redha AA, Ramachandran T, Hamed F, Maqsood S (2022). Lactobacillus reuteri-fortified camel milk infant formula: Effects of encapsulation, in vitro digestion, and storage conditions on probiotic cell viability and physicochemical characteristics of infant formula. Journal of Dairy Science, 105(11), 8621-8637.
Publications by year
2022
Siddiqui SA, Ali Redha A, Snoeck ER, Singh S, Simal-Gandara J, Ibrahim SA, Jafari SM (2022). Anti-Depressant Properties of Crocin Molecules in Saffron.
Molecules,
27(7), 2076-2076.
Abstract:
Anti-Depressant Properties of Crocin Molecules in Saffron
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type a and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome.
Abstract.
Ali Redha A, Anusha Siddiqui S, Zare R, Spadaccini D, Guazzotti S, Feng X, Bahmid NA, Wu YS, Ozeer FZ, Aluko RE, et al (2022). Blackcurrants: a Nutrient-Rich Source for the Development of Functional Foods for Improved Athletic Performance. Food Reviews International, 1-23.
Hassan AMA, Zannou O, Pashazadeh H, Ali Redha A, Koca I (2022). Drying date plum (. <i>Diospyros lotus</i>. L.) fruit: Assessing rehydration properties, antioxidant activity, and phenolic compounds. Journal of Food Science, 87(10), 4394-4415.
Zannou O, Pashazadeh H, Ghellam M, Ali Redha A, Koca I (2022). Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion.
Biomass Conversion and BiorefineryAbstract:
Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion
AbstractBitter melon (Momordica charantia) is a rich source of phytochemicals including phenolic compounds with diverse health-promoting benefits and potential food industry application due to their antioxidant potential. Bitter melon leaves have been limitedly investigated in comparison to bitter melon fruits. The current work explores the use of green extraction methodology to optimize enhanced extraction of phenolic compounds from bitter melon leaves using ultrasonically assisted extraction and choline chloride-acetic acid (CHAC)–based natural deep eutectic solvent. Extraction using CHAC significantly improved the extraction of total phenolic compounds, total flavonoids, and individual phenolic compounds (including gallic acid, chlorogenic acid, vanillic acid, epicatechin, and quercetin-3-glucoside) in comparison to water, ethanol, and methanol. The effect of molar ratio, water content, temperature, and time on the extraction efficiency of bitter melon leaf phenolic compounds by CHAC was explored and optimized with surface response methodology (central composite design). The optimum condition for the extraction of individual phenolic compounds is a molar ratio of 1:4.35 CHAC with 20.68% water content at 75 °C for 21.23 min. Evaluation of the bioaccessibility of individual phenolic compounds concluded that the most bioaccessible compound was vanillic acid (105.00 ± 2.52%) followed by salicylic acid, chlorogenic acid, syringic acid, gallic acid, epicatechin, and quercetin-3-glucoside.
Abstract.
Algaithi M, Mudgil P, Hamdi M, Redha AA, Ramachandran T, Hamed F, Maqsood S (2022). Lactobacillus reuteri-fortified camel milk infant formula: Effects of encapsulation, in vitro digestion, and storage conditions on probiotic cell viability and physicochemical characteristics of infant formula. Journal of Dairy Science, 105(11), 8621-8637.